
SparkFun Qwiic Button
Hookup Guide
BOB-15932 / BOB-16842 / BOB-15931

Qwiic Micro OLED Hookup Guide

Introduction
Buttons are a great way to add a tactile input to your project but dealing with pull-up

resistors, debouncing, polling, and using GPIO pins for each button can be a hassle. Enter the

Qwiic Button (Red or Green) and the Qwiic Button Breakout! These breakouts eliminate

nearly all the inconvenience of using buttons by converting everything to an easy-to-use I2C

connection using the Qwiic Interface.

SparkFun Qwiic Button - Red LED
BOB-15932

SparkFun Qwiic Button - Green LED
BOB-16842

SparkFun Qwiic Button Breakout
BOB-15931

https://www.sparkfun.com/products/15932
https://www.sparkfun.com/products/16842
https://www.sparkfun.com/products/15931
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/products/15932
https://www.sparkfun.com/products/16842
https://www.sparkfun.com/products/15931

We have three versions of the Qwiic Button available. The Qwiic Button (Red) and Qwiic

Button (Green) come with a pre-populated red or green pushbutton with a built in LED to

illuminate the button and the Qwiic Button Breakout leaves the button unpopulated so you

can choose your own tactile button.

Using the Qwiic Button is as simple as sending the command button.isPressed() to check the

status of the button. In addition to handling status checks and debouncing, the Qwiic Button

has a configurable interrupt pin which can be adjusted to activate upon a button press or

click. This allows you to trigger specific behavior or functions in your code when the button

is used and frees up processing time that would normally be used to constantly poll a

button's state.

The Qwiic Button also includes a First-in First-Out (FIFO Queue) which keeps track of when

the button was pressed so if you are hosting a game show you can easily keep track of which

contestant pressed their button first without needing to constantly poll the buttons!

Required Materials
The Qwiic Button requires a Qwiic-enabled microcontroller:

● SparkFun Thing Plus - ESP32 WROOM
● SparkFun RedBoard Qwiic
● SparkFun RedBoard Artemis
● SparkFun Qwiic Micro - SAMD21 Development Board

You will also need a Qwiic cable to connect the shield to your OLED, choose a length that suits

your needs.

● Qwiic Cable - 100mm
● Qwiic Cable - 500mm
● Qwiic Cable - 50mm
● Qwiic Cable - 200mm

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://www.sparkfun.com/products/14427
https://www.sparkfun.com/products/14429
https://www.sparkfun.com/products/14426
https://www.sparkfun.com/products/14428

Or, if you want to use a microcontroller without a Qwiic connector, you can add one using

one of our Qwiic Shields, the Qwiic Adapter board, or adapter cables:

● Qwiic Cable - Breadboard Jumper (4-pin)
● Qwiic Cable - Breadboard Jumper (4-pin)
● SparkFun Qwiic Shield for Arduino
● Qwiic Cable - Female Jumper (4-pin)

Finally, if you are using the Qwiic Button Breakout you'll need to solder a button to the board:

● Momentary Pushbutton Switch - 12mm Square
● LED Tactile Button- White
● LED Tactile Button - Green
● LED Tactile Button - Blue

Realistically, you can solder any pushbutton to the Qwiic Button Breakout so long as it fits the

button footprint. We have a couple other options available in our Button Category that will

work perfectly with the Qwiic Button Breakout.

Heads Up! If you choose an LED Tactile Button, pay close attention to the polarity

marks on your button and Qwiic Button Breakout to place it correctly. If the button

is inserted with reverse-polarity, the LED will not work. If you are not positive on the

polarity of your LED Button, you can use a multimeter to check.

Note: If you want to use the Qwiic Button Breakout then you will need to solder a

tactile button to the board. You may already have a few of these items, so feel free

to modify your cart based on your needs.

● Digital Multimeter - Basic
● SparkFun Beginner Tool Kit
● Solder Lead Free - 15-gram Tube
● Soldering Iron - 30W (US, 110V)

https://www.sparkfun.com/products/14425
https://www.sparkfun.com/products/14425
https://www.sparkfun.com/products/14352
https://www.sparkfun.com/products/14988
https://www.sparkfun.com/products/15931
https://www.sparkfun.com/products/9190
https://www.sparkfun.com/products/10439
https://www.sparkfun.com/products/10440?_ga=2.233131294.1008418647.1617314043-1028311577.1506368531
https://www.sparkfun.com/products/10443
https://www.sparkfun.com/categories/313
https://learn.sparkfun.com/tutorials/polarity/diode-and-led-polarity
https://www.sparkfun.com/products/12966
https://www.sparkfun.com/products/14681?_ga=2.122963339.1008418647.1617314043-1028311577.1506368531
https://www.sparkfun.com/products/9163
https://www.sparkfun.com/products/9507

Suggested Reading
If you aren't familiar with the Qwiic system, we recommend reading here for an overview.

Qwiic Connect System

We would also recommend taking a look at the following tutorials if you aren't familiar with

them.

● Button and Switch Basics: A tutorial on electronics' most overlooked and

underappreciated component: the switch! Here we explain the difference between

momentary and maintained switches and what all those acronyms (NO, NC, SPDT,

SPST, ...) stand for.

● Introduction to I2C: One of the main embedded communications protocols in use

today.

● Qwiic Shield for Arduino & Photon Hookup Guide Get started with our Qwiic

ecosystem with the Qwiic shield for Arduino or Photon.

● Processor Interrupts with Arduino: What is an interrupt? In a nutshell, there is a

method by which a processor can execute its normal program while continuously

monitoring for some kind of event, or interrupt. There are two types of interrupts:

hardware and software interrupts. For the purposes of this tutorial, we will focus on

hardware interrupts.

https://www.sparkfun.com/qwiic
https://cdn.sparkfun.com/assets/custom_pages/2/7/2/qwiic-logo.png
https://learn.sparkfun.com/tutorials/button-and-switch-basics
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/qwiic-shield-for-arduino--photon-hookup-guide
https://learn.sparkfun.com/tutorials/processor-interrupts-with-arduino

Hardware Overview

Tactile Button
This is a standard pushbutton with a built in red or green LED depending in which version

you have. The LED's anode (positive pin) is connected to an I/O pin on the ATtiny84 so you

can turn it on and off as well as control the brightness. If you have the Qwiic Button

Breakout, you can choose your own color of button from the selection listed in the

Introduction of this guide or any tactile button that fits the footprint on the breakout.

Red tactile button Button Footprint

Heads Up! If you are using a Tactile Button with an integrated LED, pay close attention to the
polarity marks on the button and match them with the Diode Markings on the Qwiic Button Breakout.

You can use a multimeter to check polarity if you are not sure.

https://learn.sparkfun.com/tutorials/polarity/diode-and-led-polarity

Qwiic and I2C Interface
The easiest way to use the Qwiic Button is with the Qwiic connect system. Simply plug in a

Qwiic Cable to start talking to it.

Qwiic Connectors I2C Pins

Alternatively, you can solder to the I2C pins broken out on the board.

ATtiny84
The ATtiny84 has pre-installed firmware to handle

the various functions of the Qwiic Button. It acts as

an intermediary device to send and receive I2C

data for things like button presses, clicks, the FIFO

queue and it allows you to set a custom I2C address

for the Qwiic Button. If you would like, you can

modify the firmware on the Qwiic Button using the

2x3 pins on the back of the board. The firmware

can be found in the Hardware GitHub Repository

and if you need help programming the ATTiny84,

check out this tutorial.

Jumpers
Note: Never worked with solder jumpers before? Or maybe just need some tips or a quick

refresher? Check out our How to Work with Jumpers and PCB Traces tutorial.

https://www.sparkfun.com/products/14427
https://github.com/sparkfun/Qwiic_Button/tree/master/Firmware
https://learn.sparkfun.com/tutorials/re-programming-the-lilytiny--lilytwinkle

I2C Address Jumpers

There are four solder jumpers on the board (labeled A0, A1, A2 and A3) you can close to set

the I2C address. The firmware reads the logic of each address pin so, by closing multiple

jumpers, you can modify the Qwiic Button with up to sixteen unique addresses! If you do not

want to use the address pins, the address can also be configured using the ChangeI2CAddress

Example from our Arduino Library.

● All Open: Factory or User Set I2C Address: 0x6F (Factory Set) or 0x## (User Set)

● Alternate Address Jumpers: Closing an address jumper sets the pin LOW. On boot-up, the

firmware checks the state of these four pins and adjusts the I2C address following this logic:

0b0110,A3,A2,A1,A0 For example, with both A0 and A1 jumpers closed, (A0 = 0, A1 = 0, A2

= 1, A3 = 1) the I2C address of the Qwiic Button is set to 0x6C (0b01101100). Check out the

table below for a full list of all the I2C addresses and the jumper logic used to set the

address.

Full I2C Address Table

A0
Logic

A1
Logic

A2
Logic

A3
Logic

Address
(HEX)

Jumper
States

1 1 1 1 0x6F All Open

0 1 1 1 0x6E A0 Closed

1 0 1 1 0x6D A1 Closed

1 1 0 1 0x6B A2 Closed

1 1 1 0 0x67 A3 Closed

0 0 1 1 0x6C A0 & A1
Closed

0 1 0 1 0x6A A0 & A2
Closed

0 1 1 0 0x66 A0 & A3
Closed

0 0 0 1 0x68 A0, A1 &
A2 Closed

https://github.com/sparkfun/SparkFun_Qwiic_Button_Arduino_Library/tree/master/examples/Example5_ChangeI2CAddress
https://github.com/sparkfun/SparkFun_Qwiic_Button_Arduino_Library/tree/master/examples/Example5_ChangeI2CAddress

0 0 1 0 0x64 A0, A1 &
A3 Closed

0 1 0 0 0x62 A0, A2 &
A3 Closed

1 0 0 1 0x69 A1 & A2
Closed

1 0 1 0 0x65 A1 & A3
Closed

1 0 0 0 0x61 A1, A2 &
A3 Closed

1 1 0 0 0x63 A2 & A3
Closed

0 0 0 0 0x60 All Closed

I2C Pull-Up Resistors

Severing the trace on the I2C

jumper will remove the 2.2kΩ

pull-up resistors from the I2C

bus. If you have many devices

on your I2C bus you may want

to open these jumpers by

severing the trace in between

the pads.

Interrupt Pin

The Interrupt Pin can be used to trigger

events on your microcontroller. It is

active LOW and can be configured to

activate on either a button press (held

down) and click (press-and-release). By

default, the Interrupt Pin is pulled to

3.3V via a 10K resistor through this

jumper. Just like the I2C pull-up

resistors, you can open it by severing the

trace in between the pads. This may

come in handy for low-power projects

that do not require the Interrupt Pin.

Board Dimensions

The breakout board is the standard Qwiic size of 1" x 1" and has two mounting holes that fit a

standard 4-40 screw.

Hardware Assembly
With the Qwiic connector system, assembling the hardware is simple. All you need to do is

connect your Qwiic Button to Qwiic-enabled microcontroller with a Qwiic cable. Otherwise,

you can use the I2C pins if you don't have a Qwiic connector on your microcontroller board.

Just be aware of your input voltage and any logic level shifting you may need to do since the

Qwiic system runs at 3.3V.

If you have the Qwiic Button Breakout, you will need to solder a button into place. If you are

using a Tactile Button with an integrated LED, remember to pay close attention to the polarity

marks on your button and match them to the markings on the top of the Qwiic Button

Breakout. If you purchased a tactile button from SparkFun, the anode will be marked with a

small "+" on the top of the button.

Important! Soldering the button into place with the LED backward is not easy to fix. Verify the
polarity of your LED prior to soldering into place! You can use a multimeter to check polarity if you

are not sure.

https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://learn.sparkfun.com/tutorials/polarity/diode-and-led-polarity

Once your button(s) are soldered into place and you're certain all pins are well connected,

you're ready to go! The image below shows two of the several options for buttons on the

Qwiic Button. One is the standard Red LED Tactile Button and the other is from our

Multicolor Button 4-Pack:

Qwiic Button Arduino Library

The easiest way to install the library is to search for SparkFun Qwiic Button in the Arduino Library

Manager tool. You can also manually install the Qwiic Button Library from the GitHub Repository or

you can download it here.

https://learn.sparkfun.com/tutorials/sparkfun-troubleshooting-tips#bad-solder-joints
https://www.sparkfun.com/products/14460
https://github.com/sparkfun/SparkFun_Qwiic_Button_Arduino_Library
https://github.com/sparkfun/SparkFun_Qwiic_Button_Arduino_Library/archive/master.zip

Library Functions
Here is a list of the functions of the library with some quick descriptions of what they do. The

examples cover most of the functions so we recommend going through them first.

Device Status

● begin(uint8_t address = DEFAULT_ADDRESS, TwoWire &wirePort = Wire);- Sets device
I2C address to a user-specified address, over whatever port the user specifies.

● isConnected();- Returns true if the button will acknowledge over I2C, false otherwise.
● uint8_t deviceID();- Return the 8-bit device ID of the attached device.
● checkDeviceID();- Returns true if the device ID matches that of either the button or the

switch
● uint8_t getDeviceType();- Returns 1 if a button is attached, 2 if a switch is attached.

Returns 0 if there is no device attached.
● uint16_t getFirmwareVersion();- Returns the firmware version of the attached device as a

16-bit integer. The leftmost (high) byte is the major revision. The rightmost (low) byte is the
minor version number. (Ex. 0x0202 is v2.02)

● setI2Caddress(uint8_t address);- Configures the attached device to attach to the I2C bus
using the specified address.

● uint8_t getI2Caddress();- Returns the I2C address of the device.

Note: The "setI2Caddress();" function will not work if any of the I2C address jumpers are closed.
Assuming the code is able to connect to the device, the library function may change the I2C address
stored in EEPROM. However, by default the firmware will stay at the alternate I2C jumper address
and the last part of this function won't be able to connect to the button for the firmware printout and
future I2C address changes.

Button Status/Configuration

● isPressed();- Returns 1 if the button is pressed, and 0 otherwise.
● hasBeenClicked();- Returns 1 if the button was clicked, and 0 otherwise.
● uint8_t setDebounceTime(uint16_t time);- Sets the time that the button waits for the

mechanical contacts to settle (in ms) and checks if the register was set properly. Returns 0
on success, 1 on register I2C write fail, and 2 if the value didn't get written into the register
properly.

● uint16_t getDebounceTime();- Returns the value set to wait for the button's the mechanical
contacts to settle, (in ms).

Note: You may notice there are two button status functions listed: isPressed(); and
hasBeenClicked();. The isPressed(); function returns true while the button is pressed/held down
and false when the button is unpressed/released. The hasBeenClicked(); function will only return
true when the button is pressed and then released.

Interrupt Status/Configuration

● uint8_t enablePressedInterrupt();- Configure the interrupt pin to go LOW while the
button is pressed (held down).

● uint8_t disablePressedInterrupt();- Sets the interrupt to no longer trigger while the
button is pressed.

● uint8_t enableClickedInterrupt();- Configure the interrupt pin to go LOW when the
button is clicked.

● uint8_t disableClickedInterrupt();- Configures the interrupt pin to no longer go low
when the button is clicked.

● uint8_t clearEventBits();- Sets "isPressed", "hasBeenClicked", and "eventAvailable" to
zero.

● uint8_t resetInterruptConfig();- Resets all interrupt configuration settings back to
defaults.

FIFO Queue

● isPressedQueueFull();- Checks the queue of button press timestamps and returns true if
full, false otherwise.

● isPressedQueueEmpty();- Opposite of the above function. Checks if the timestamp queue is
empty.

● unsigned long timeSinceLastPress();- Returns the time (in ms) since the last button
press.

● unsigned long timeSinceFirstPress();- Returns time (in ms) since the first button press.
● popPressedQueue();- Returns the oldest value in the Pressed Queue (ms since first button

press), and then removes it.
● isClickedQueueFull();- Checks the queue of button click timestamps and returns true if

full, false otherwise.
● isClickedQueueEmpty();- Opposite of the above function. Checks if the timestamp queue is

empty.
● unsigned long timeSinceLastClick();- Returns the time (in ms) since the last button click.
● unsigned long timeSinceFirstClick();- Returns the time (in ms) since the first button

click.
● popClickedQueue();- Returns the oldest value in the Clicked Queue (ms since first button

click), and then removes it.

Button LED Configuration

● LEDoff();- Turn the button LED off.
● LEDon(uint8_t brightness = 255);- Turn the button LED on and set the brightness.
● LEDconfig(uint8_t brightness, uint16_t cycleTime, uint16_t offTime, uint8_t

granularity = 1);- Configures the button LED.
○ Brightness: Stores the brightness of the LED. Accepts values between 0 and 255.
○ cycleTime: Total pulse cycle time (in ms). Does not include off time.
○ offTime: Off time between pulses (in ms). Default is 500 ms.
○ granularity: Amount of steps it takes to get to the set brightness level.

Internal I2C Abstraction

Advanced Functions! This list of functions is for reading/writing to one or more registers. They are
beyond the scope of this tutorial and are included primarily for users to implement in custom code.

● uint8_t readSingleRegister(Qwiic_Button_Register reg); - Reads a single 8-bit
register.

● uint16_t readDoubleRegister(Qwiic_Button_Register reg); - Reads a 16-bit register
(little endian).

● unsigned long readQuadRegister(Qwiic_Button_Register reg); - Reads a 32-bit register
(little endian).

● writeSingleRegister(Qwiic_Button_Register reg, uint8_t data); - Attempts to write
data into a single 8-bit register. Does not check to make sure it was written successfully.
Returns 0 if there was no error on I2C transmission, and 1 otherwise.

● writeDoubleRegister(Qwiic_Button_Register reg, uint16_t data); - Attempts to write
data into a double (two 8-bit) registers. Does not check to make sure it was written
successfully. Returns 0 if there was no error on I2C transmission, and 1 otherwise.

● uint8_t writeSingleRegisterWithReadback(Qwiic_Button_Register reg, uint8_t

data); - Writes data into a single 8-bit register, and checks to make sure the data was
written successfully. Returns 0 on no error, 1 on I2C write fail, and 2 if the register doesn't
read back the same value that was written.

● uint16_t writeDoubleRegisterWithReadback(Qwiic_Button_Register reg, uint16_t

data); - Writes data into a double (two 8-bit) registers, and checks to make sure the data
was written successfully. Returns 0 on no error, 1 on I2C write fail, and 2 if the register
doesn't read back the same value that was written.

Arduino Examples
In this section we will go over a few of the examples from our Qwiic Button Arduino Library.

Here is a full list of all the examples included in the library:

● Example 1 - Prints the button status.
● Example 2 - Turns the button LED on while the button is pressed.
● Example 3 - Pulses the button LED while the button is pressed.
● Example 4 - Demonstrates how to use the FIFO Queue and returns time elapsed since

button presses.
● Example 5 - Details how to identify and change the I2C address.
● Example 6 - I2C Bus Configuration. Useful for devices with multiple I2C ports.
● Example 7 - Sets up 2 Qwiic Buttons and reads their statuses.
● Example 8 - Configures the button to toggle the interrupt pin when pressed.

Example 1: Print Button Status
The code for Example1_PrintButtonStatus connects the Qwiic Button to the I2C bus and

prints the status of the button (pressed or not pressed) to the Serial Monitor.

Example 3 Pulse When Pressed
Example3_PulseWhenPressed connects the Qwiic Button to the I2C bus and runs the Button

LED through a configured sequence when the button is pressed. The code configures the LED

settings for brightness, cycleTime and offTime to pulse the Button LED while it is pressed. Try

playing around with these settings to change the behavior of the LED.

Example 4 Queue Usage
Example4_QueueUsage demonstrates how to call, check, and alter the FIFO Queue for a

button press and button click. The code will check both the Pressed and Clicked queues and,

if the queue is not empty, prints over serial the time since the first press (since the queue was

last cleared) and the time since the last press. Entering "P" in the serial monitor will "pop" the

Pressed Queue to return the oldest value stored in the queue and then remove it. Entering "C"

will perform the same action for the Clicked Queue.

https://learn.sparkfun.com/tutorials/terminal-basics

Example 5 Change I2C Address
Heads up! This example will not change the I2C address if one of the address jumpers is

closed. The Qwiic Button will remain at the alternate address set by the address jumpers.

Example5_ChangeI2CAddress checks to initialize the Qwiic Button on the I2C bus. If the

device ID matches what is expected (0x6F by default), it then will print some helpful

information for changing the I2C address and prompt you for an input to change the address.

Once a new device ID is input and is valid, the code writes the new I2C address to EEPROM on

the ATtiny84 and prints out a success note along with the new device ID. If the entered

address is invalid or for some reason the write fails, the code will print out an error detailing

what failed.

If the device ID does not match what is expected, it runs a scan for devices on the bus and

prints out the ID of any attached device. Make sure to set up the Serial Monitor for the correct

baud rate and enable both Newline and Carriage Return. Also, do not enter the "0x" prefix.

For example, you want to set the address to "0x5B", type in "5B" and press enter. The gif

below shows the serial printout of a successful initialization and device address change to

0x5B:

Changing I2C Address Again: If you need to change the I2C address of your Qwiic button after

altering it using the above example, you will need to modify the button.begin(); function to include

the alternate address. For example, if the new address is 0x5B, your begin function should look like

this: button.begin(0x5B);

Example 8 External Interrupt
Example8_ExtInterrupt demonstrates how to use the external interrupt pin to trigger an

event on an attached microcontroller. You will want to solder to the INT pin and connect it to

an interrupt-capable pin. If you just need to quickly prototype a circuit using the INT pin on

the Qwiic Button, you can connect to it using something like these IC Hooks. The photo below

demonstrates how to use the IC Hook for a temporary connection.

The code initializes the Qwiic Button

on the I2C bus, attaches an interrupt

to the selected pin (D2 by default), and

configures the interrupt function for

any button event (pressed or clicked).

The INT pin will go LOW whenever a

button event is registered and the

selected interrupt pin on the

microcontroller will fire whenever it

sees a FALLING edge (going from

HIGH to LOW). If you want to see it in

action, you could attach an LED to the selected interrupt pin or you can modify the code to

toggle all sorts of functions whenever the interrupt pin goes LOW.

The example attaches an interrupt to D2 by default. This works fine for a RedBoard Qwiic or Arduino

Uno but may not work on other Arduinos. The Arduino attachInterrupt Reference Page will have a

list of interrupt-capable pins for common Arduinos. Check that table or, if your chosen Arduino

microcontroller is not on that list, check the documentation for your specific microcontroller and

adjust the int interruptPin = 2; call to the appropriate I/O pin.

https://www.sparkfun.com/products/9741
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/11021
https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/

Register Map
If you would like to use a different development environment than Arduino, you can use the

register map below to communicate with the Qwiic Button.

You can also download the PDF.

The Qwiic Button behaves as a normal I2C device. First write the address of the register you

would like to read or write, then follow that I2C command with a Read to read the given

register or a Write and a data byte to write to a register.

https://cdn.sparkfun.com/assets/learn_tutorials/1/1/0/8/Qwiic_Button_I2C_Register_Map.pdf

Python Package
Note: This tutorial assumes you are using the latest version of Python 3. If this is your first time

using Python or I2C hardware on a Raspberry Pi, please checkout our tutorial on Python

Programming with the Raspberry Pi and the Raspberry Pi SPI and I2C Tutorial. Jetson Nano users

can check out this tutorial on Working with Qwiic on a Jetson Nano through Jupyter Notebooks.

We've written a Python package to easily get setup and use the Qwiic Button. There are two

methods for installing the Python package for the Qwiic Button.

1. Install the all inclusive SparkFun Qwiic Python package.

2. Independently install the SparkFun Button Python package.

The all inclusive SparkFun Qwiic Python package, is recommended as is also installs the

required I2C driver as well.

Note: Don't forget to double check that the hardware I2C connection is enabled on your single board

computer.

SparkFun Qwiic Package
This repository is hosted on PyPi as the sparkfun-qwiic package. On systems that support

PyPi installation via pip3 (use pip for Python 2) is simple, using the following commands:

For all users (note: the user must have sudo privileges):

sudo pip3 install sparkfun-qwiic

For the current user:

pip3 install sparkfun-qwiic

Independent Installation
You can install the sparkfun-qwiic-button Python package independently, which is hosted by PyPi.

However, if you prefer to manually download and install the package from the GitHub repository, you

can grab them here (*Please be aware of any package dependencies. You can also check out the

repository documentation page, hosted on ReadtheDocs.):

https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/working-with-qwiic-on-a-jetson-nano-through-jupyter-notebooks
https://en.wikipedia.org/wiki/Sudo
https://github.com/sparkfun/Qwiic_Button_Py
https://qwiic-button-py.readthedocs.io/en/main/?

PyPi Installation

This repository is hosted on PyPi as the sparkfun-qwiic-button package. On systems that

support PyPi installation via pip3 (use pip for Python 2) is simple, using the following

commands:

For all users (note: the user must have sudo privileges):

sudo pip3 install sparkfun-qwiic-button

For the current user:

pip3 install sparkfun-qwiic-button

Local Installation

To install, make sure the setuptools package is installed on the system.

Direct installation at the command line (use python for Python 2):

python3 setup.py install

To build a package for use with pip3:

python3 setup.py sdist

A package file is built and placed in a subdirectory called dist. This package file can be

installed using pip3.

cd dist

pip3 install sparkfun_qwiic_button-<version>.tar.gz

Python Package Operation
Before we jump into getting readings, let's take a closer look at the available functions in the

Python package. Below, is a description of the basic functionality of the Python package. This

includes the package organization, built-in methods, and their inputs and/or outputs. For

more details on how the Python package works, check out the source code and package

documentation.

https://en.wikipedia.org/wiki/Sudo
https://github.com/sparkfun/Qwiic_Button_Py/blob/main/qwiic_button.py
https://qwiic-button-py.readthedocs.io/en/main/?
https://qwiic-button-py.readthedocs.io/en/main/?

Dependencies

This Python package has a very few dependencies in the code, listed below:

import qwiic_i2c

import math

Default Variables
The default variables, in the code, for this Python package are listed below:

qwiic_button GLOBAL VARIABLES

#--

Define the device name and I2C addresses. These are set in the class

defintion

as class variables, making them avilable without having to create a

class instance.

This allows higher level logic to rapidly create a index of qwiic

devices at

runtine

#

The name of this device

_DEFAULT_NAME = "Qwiic Button"

Some devices have multiple available addresses - this is a list of

these addresses.

NOTE: The first address in this list is considered the default I2C

address for the

device.

_AVAILABLE_I2C_ADDRESS = [0x6F]

Note: This package is different from previous packages as the register variables

are declared in the object class.

QwiicRFID CLASS VARIABLES

#--

Device ID for all Qwiic Buttons

DEV_ID = 0x5D

Registers

ID = 0x00

FIRMWARE_MINOR = 0x01

FIRMWARE_MAJOR = 0x02

BUTTON_STATUS = 0x03

INTERRUPT_CONFIG = 0x04

BUTTON_DEBOUNCE_TIME = 0x05

PRESSED_QUEUE_STATUS = 0x07

PRESSED_QUEUE_FRONT = 0x08

PRESSED_QUEUE_BACK = 0x0C

CLICKED_QUEUE_STATUS = 0x10

CLICKED_QUEUE_FRONT = 0x11

CLICKED_QUEUE_BACK = 0x15

LED_BRIGHTNESS = 0x19

LED_PULSE_GRANULARITY = 0x1A

LED_PULSE_CYCLE_TIME = 0x1B

LED_PULSE_OFF_TIME = 0x1D

I2C_ADDRESS = 0x1F

Status Flags

event_available = 0

has_been_clicked = 0

is_pressed = 0

Interrupt Configuration Flags

clicked_enable = 0

pressed_enable = 0

Pressed Queue Status Flags

pressed_pop_request = 0

pressed_is_empty = 0

pressed_is_full = 0

Clicked Queue Status Flags

clicked_pop_request = 0

clicked_is_empty = 0

clicked_is_full = 0

Class

QwiicButton() or QwiicButton(address)

This Python package operates as a class object, allowing new instances of that type to be

made. An __init__() constructor is used that creates a connection to an I2C device over the I2C

bus using the default or specified I2C address.

The Constructor

A constructor is a special kind of method used to initialize (assign values to) the data

members needed by the object when it is created.

__init__(address=None, i2c_driver=None):

Input: value

The value of the device address. If not defined, the Python package will use the default I2C

address (0x6F) stored under _AVAILABLE_I2C_ADDRESS variable.

Input: i2c_driver

Loads the specified I2C driver; by default the Qwiic I2C driver is used:

qwiic_i2c.getI2CDriver(). Users should use the default I2C driver and leave this field

blank.

Functions

A function is an attribute of the class, which defines a method for instances of that class. In

simple terms, they are objects for the operations (or methods) of the class. A list of all the

available functions are detailed on the API Reference page of ReadtheDocs for the

Qwiic_Button_Py Python package.

Upgrading the Python Package
In the future, changes to the Python package might be made. Updating the installed packages

has to be done individually for each package (i.e. sub-modules and dependencies won't

update automatically and must be updated manually). For the sparkfun-qwiic-button Python

package, use the following command (use pip for Python 2):

https://github.com/sparkfun/Qwiic_I2C_Py
https://qwiic-button-py.readthedocs.io/en/latest/apiref.html
https://github.com/sparkfun/Qwiic_Button_Py

For all users (note: the user must have sudo privileges):

sudo pip3 install --upgrade sparkfun-qwiic-button

For the current user:

pip3 install --upgrade sparkfun-qwiic-button

Python Examples
Note: Work on this section is in progress. We will update the content as soon as we can.

https://en.wikipedia.org/wiki/Sudo

Resources and Going Further
Now that you've successfully got your OLED displaying things, it's time to incorporate it into

your own project!

For more on the Qwiic Micro OLED, check out the links below:

● Schematic (PDF)

● Eagle Files (ZIP)

● Board Dimensions (PNG)

● Qwiic Button Arduino Library

● Qwiic Button Python Package

● GitHub Hardware Repo

● SFE Product Showcase

Need help getting started with Arduino and I2C? Check out these resources:

● Arduino I2C Scanner Example

● Arduino Wire Library Reference Page

● Arduino Wire Library (In-Depth) Reference

Looking for some inspiration for a project using the Qwiic Button? Check out this GPS

Geo-Mapping project by Brandon J. Williams.

Before you go, here are some other tutorials using the Qwiic Connect System you may want to

look through:

SparkFun SAMD21 Pro RF Hookup Guide
Using the super blazing, nay blinding, fast SAMD21 whipping clock cycles at 48MHz and the

RFM96 module to connect to the Things Network (and other Radio woodles).

GPS-RTK Hookup Guide
Find out where you are! Use this easy hook-up guide to get up and running with the

SparkFun high precision GPS-RTK NEO-M8P-2 breakout board.

https://cdn.sparkfun.com/assets/8/b/a/2/f/Qwiic_Button.pdf
https://cdn.sparkfun.com/assets/f/7/1/8/8/Qwiic_Button.zip
https://cdn.sparkfun.com/assets/learn_tutorials/1/1/0/8/SparkFun_Qwiic_Button_Board_Dimensions.png
https://github.com/sparkfun/SparkFun_Qwiic_Button_Arduino_Library
https://github.com/sparkfun/Qwiic_Button_Py
https://github.com/sparkfun/Qwiic_Button
https://youtu.be/W94Jyv0Xua8
https://playground.arduino.cc/Main/I2cScanner
https://www.arduino.cc/en/reference/wire
https://playground.arduino.cc/Main/WireLibraryDetailedReference
https://learn.sparkfun.com/tutorials/gps-geo-mapping-at-the-push-of-a-button
https://learn.sparkfun.com/tutorials/gps-geo-mapping-at-the-push-of-a-button
https://www.sparkfun.com/users/1431287
https://learn.sparkfun.com/tutorials/sparkfun-samd21-pro-rf-hookup-guide
https://learn.sparkfun.com/tutorials/gps-rtk-hookup-guide

TFMini - Micro LiDAR Module (Qwiic) Hookup Guide
The TFMini is a ToF (Time of Flight) LiDAR sensor capable of measuring the distance to an

object as close as 30 cm and as far as 12 meters! The TFMini allows you to easily integrate

LiDAR into applications traditionally reserved for smaller sensors such as the SHARP

GP-series infrared rangefinders. With the added Qwiic feature, you can quickly connect to

the sensor via I2C!

Raspberry Pi Safe Reboot and Shutdown Button
Safely reboot or shutdown your Raspberry Pi to avoid corrupting the microSD card using the

built-in general purpose button on the Qwiic pHAT v2.0!

https://learn.sparkfun.com/tutorials/tfmini---micro-lidar-module-qwiic-hookup-guide
https://learn.sparkfun.com/tutorials/raspberry-pi-safe-reboot-and-shutdown-button

